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SUMMARY

The indicial lift and moment functions are determined approximately
for sinking and pitching motion at Mach nymbers M of 0.~ and 0.6.
These functions are determined from a -knowledgeof the existing oscil-
latory coefficients at the low reduced frequencies and from approximate
expr~ssions of these coefficients at the high reduced frequencies.

.

The beginning portion of the indicial lift functionassociated
with an airfoil penetrating a sharp-edge gust in subsonic flow is

i evaluated by use of an exact method. By ‘Useof an approximate method
for determining the remaining portion, the complete indicial gust func-
tion is determined for M= 0.5, M= 0.6, and M= 0.7.

All the indicial lift and moment functions are approximated by an .,

exponential series; the coefficients which appear in the exponential
approximations for each indicial function are tabulated for M = 0..5,
M= 0.6, and M = 0.7.

INTRODUCTION

In the study of transient flows, two types of airfoil motions have
had special significance - a harmonically oscillating airfoil and an
airfoil experiencing a sudden change in angle of attack. The li,ftand
moment functions for an airfoil experiencing a sudden change in angle ,
of attack are commonly referred to as indicial lift and moment func-
tions. In references 1 and 2 the indicial lift and moment functions
of a two-dimensional airfoil for sinking and pitching motion in a sub-
sonic compressible flow are presented for M . 0.7. The functions are.
determined from the reciprocal relations between the indicial functions

—
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and the oscillatory coefficients. Examination of the oscillatory coef-
ficients calculated by Ilietze,Schade, and Possio (see, for example,
refs. 3, 4, and 5) indicates that data are not available over a suffi-
cient range of reduced frequencies for the direct utilization of’ this .

method to “determinethe indicial lift functions at--othersubsonic lkch
numbers.

The indicial functions for M = 0.8 have been evaluated by Lomaxj
Heaslet; and Sluder, in reference, employing an alternate method
applicable for both subsonic ad. supersonic Mach numbers, .The altep
nate method for subsonic Mach numbers is characterized by an exact,

readily evaluated expression for the beginnhg portion-of the indicial’
functions and an approximate expression-for.the remaining portion. The
solution for the remaining portion of the indicial function is lengthy
and tedious, and, consequently, an alternate approach is used in the
present paper to calculate this portion of the indicial functions.

In the present paper indicial functions for M . 0.5 and M . 0..6
are obtained in approximate ~orm for an extensive range of airfoil
trave1. The beginning portions ,ofthe indicial functions are calcu-”
lated by-the method of reference 6. The difficulties of calculating
the remaining portions of the indicial functions by the method of --
reference 6 are avoided by approximating the.missing portions of the
oscillatory coefficients of references 3 and 4 so that the method of
references 1 and 2 could be used. The approximation is made in terms
of the initial parts of the indicial functions and the lmown parts of _
the oscillatory coefficients. An estimate of the reliability of the
indicial functions is also presented.

During the last stage of preparing the paper, it was found that
Timman, Van de VooTen, and Greidanus,have computed the oscillatory
coefficients in terms of known functions for Mach numbers 0.35, 0.5,
0.6, 0.7, and 0.8”and for reduced frequenci~iiranging from 0.1 to 3.0
(see ref. 7). A discussion of-the effects of differences between the
data of refeience 7 and that of the present investigation on the results
of the calculations is included.
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SYMBOLS _

distance traveled, half-chords

angular frequency

forward velocity of airfoil

chord
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L(s)

M(s)

. P

e

kl(s)

ml(s)

klq(s)

Cartesian coordinates

reduced-frequency parameter, u/2V

highest reduced-frequency for which oscillatory
coefficients are known

value of reduced frequency where msximum error in
approximated oscillatory coefficients occurs

error in oscillatory coefficients at infinite reduced
frequency

maximum error in oscillatory coefficients for
region K > 1

section lift, positive in downward direction

section pitching moment about quarter-chord point,
positive when moment tends to depress trailing
edge

density

amplitude of vertical or sinking displacement,
positive downward, half-chords

angle of pitch, positive when trailing edge is
lower than leading edge

rate of change of angle of pitch with respect to
distance traveled in half-chords, positive when
trailing edge is falling with reference to leading
edge

indicial l!ft function for a two-dimensional afr-
foil experiencing a sudden
velocity

change in vertical “

indicial moment function for
foil experiencing a sudden

, velocity where moment is taken about quarter-
chord point

a two-dimensional air-
change in vertical

indicial lift function for a two-dimensional air-
foil experiencing a sudden change in pitching
velocity about its leading edge
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M

Cp

q$s)

Mach number

pressure coefficient :

a two-dtiensional air-
change ‘in~itching ...-“-~‘“~

indicial moment function for
foil experiencing a sudden
velocity about its leading
about q~rter-chord point

edge, moment tak~n .-
. :

-. —

-.->. ;.L.-

two-dimensional air-,_ -= :-::
a sharp-edge gust .-.7

— —

~.

k2(s)

—.
velocity of sharp-edge.~t

indicial lift function for a
foil due to penetration of

Fe(k) + iGc(k) complex compressible oscillatory lift “derivative ..
due to sinking velocity

M(k) + iN(k) complex compressible oscillatory moment,derivative_ - _ _
due to sinking velocity

Fcq(k) + iGcq(k) complex compressible oscillatory lift derivative
due to pitching velocity only ‘ .

Mq(k) + iNq(k) complex compressible oscillatory moment derivative
due to pitching velocity only

--.-
A

f(k) =Fc(k) - Fe(m)
. .._-.+

m(k) +M(k) -M(m)

fq(k) =Fcq(k) -Fcq(w)
.

-

mq(k) =Mq(k) -Mq(m)
. .-

.

~)~n)~jbn constants in exponential approximations-- —-..

eqtitions (13) and (14)

, ., .,,

—

about three-quarter-chord poi-nt
—

A,B constants defined by

Subscript:

3c/4 for airfoil rotating

“r‘-”

.—

*...-
-

.“-.
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.
METHOD OF ANALYSIS ,

a

The indicial functions are determined in two pqrts. In the region . .

c)~B~ ‘2M
l+M’

readily determined indicial functions given in refer- -.

ence 6 are used. For the region s $ ~, the-relatively nore dif-

ficult method of reference 6 is avoided by an alternate approach which
utilizes the reciprocal relations between the indicial and the oscil-
latory functions given in references 1 and 2. Before these relations
could be applied at ~ = 0.5 and M = 0.6, it was necessary to deter- ,
mine the unknown oscillatory coefficients at the high reduced frequen-
cies, k>l. Approximate expressions for these coefficients are
obtainable by combining the existing data for the oscillatory coeffi- -
cients at the low reduced frequencies O ~ k~ 1, with the ~dic~l

2M
functions for the region O s s s— through the use of reciprocal

l+M
relations. The reciprocal relations are then used to obtain the
remaining portion of the indicial functions.

The following procedure was used to determine the oscillatory coef-
ficients at the high reduced frequencies: The reciprocal relation
between the indicial lift function due to sinking velocity and the in-
phase oscillatory lift coefficient is (see eq. (14) of ref. 1)

Fc(co)+ : Jm f(k)Sin M dk
kl(s) = k

(s>0) (la)
o

or alternately,

where f(k) =-Fe(k) -Fc(rn).

In equation (lb) values of kl(?) are known from the method of

reference 6 for O ~ s ~fi. The value of Fc(rn) which has been

shown in reference 1 to corres~nd to the value of kl(s) at s =0
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The oscillatory coefficient f(k) iS .
of reduced fje’quencies O“~k~~.

Thus,

0 ~’s

to be

the right-hand side of equation (lb) is known for values of
<m

In the region ~ < k <m,
‘m

f(k) is u&own and is “d-

etermined.

A solution for. f(k) in the region ~ < k<w can-be expressed
by a fin-iteconvergent series with unknown coefficients. Definition
of these ctiefficientsis possible by a simultaneous solution of a set
of algebraic equations. The set .ofequationsis formulated by sub-
stituting the finite series-for f(k) (togetherwith appropriate
boundary conditions) in the integral on”the left side of equation (~b).”-
This integral is evaluated to obtain an algebraic,expression in terms
of the unknown series coefficients and the variable s.- Each simul-
taneous equation in the set is then obtaimed%y assigning to the
variable .s a value selected in the r.augewhere kl(s) is known.
The number of these equations should correspond to-the number.of’
series coefficients to be determined. The set of equations isthen
solved simultaneously for the series coefficients in the approximation
for f(k).

The accuracy of the apyroxtiate solution for f(k) depends on
the range of s over which kl(s) is:known; the value of ~, and

the number of terms in the series. The erro~introduced by a finite
series for f(k) is minimized by the fact that the oscillatory coef-
ficient-for the hi”gherreduced frequencies is”associated primarily
with the initial portion of the indicial function which is known.

Once the approximate expression for f(k) is determined at the
high reduced frequencies, k >1, this expressicm and the oscillatory
coefficients at the low reduced frequencies,- 0 S k-~”l, can be sub- ‘

stituted into equation (la)’to determine kl(s) for values of

2M --
s>—.

1-I-M

The same over-all method maybe used for~etermining the indicial
moment on a sinking airfoil as well as the indictil lift ~-d moment
functions-for a pitching airfoil.

-
The reciprocal relationused for.

approximating the oscillatory moment coefficients at the high reduced
frequencies -dueto sinking motion is as follows: ““’ ““-”

(s>0) (2)
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.

where m(k) is defined

m(k) = M(k) - M(m)

.
For the case of a pitching airfoil, it was shown in reference 2 that
the only additional indicial function that need be considered is the
one associated with the pitching velocity of the airfoil. The recip-
rocal relations used in this analysis for determining the oscillatory
lift and moment coefficients at the high reduced frequencies as well as
the complete indicial functions for the case of pitching velocity sre,
for the lift,

klq(s) q=Fc(m)+~
J

m fq(k)sin ks

k
dk (s>0) (3)

flo

where

fq =Fcq(k) - Fcq(m) (4)

9 and, for the moment,

= Mq(m) + ~
f

m mq(k)sin ks
mlq(s)

k
dk - (s >0) (5)

o

where

mq(k) =Mq(k) -Mq(m)

For convenience, a summary of the reciprocal relations for lift snd
moment due to both sinking and pitching motion is given in table I
together with the definition of the functions appearing in the
reciprocal relations.

(6)

.

.
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AvAILA13u OsC1’LLATORyCOEFJHCIENTS AND THEIR-A.PPROXiMATION
K— .-
.

AT.HIGH REDUCED FREQUENCIES
-.., ....

-3-:

Summary of available-oscillatory coefficients at M = 0.5 and .~-.
M O.=. 6.f-The two-dimensional cornyressibleo~cillat.orycoefficients
for the real and imaginary parts of the lift.and momeht for sinking’
and pitc,hingmotion are.given in table 11.fo2 M = O.~ ahd M = 0.6. ‘
The results given in table II were-taken from-two sources”-(seerefs. 3--”
and 4) and have been converted to the form given by the equations
noted in the last column of table I “forthe lift”and moment. The “
range 0$ reduced frequencies taken’from each source is indicated in
table II.““Expressions for.the end points of=the oscillatory coeffi-
cients, that is, for k = O and k = ~, were determined from the -
expressions given @ references 1 and 2.

.

.—r --- .

—.,-- .--

Expressions for indicial lift and moment functions in regiou
~

—. -. .,...-
. . --

o~a~ ~—.-The expressions for the indicial lift admome”nt func- .“”1-- “X;
l“+M .—.-—

tions due to sinki~”and pitchi&.motion

for the region O ~s~~ have been
l+M

used in this paper and are as follows:

that--aregiven.in reference 6 ..-”.-->-----...
,. --

convekted to the notation
#

—

1“
,.=-

.- .-

1. .1kl(s)=&l- ~(1 -M) (7)

[

. . ----
S2

ml(s) = - 2 1 1~~-&(l-M)-m(2- M) , (8) - ““:”

. .

.
\

(lo) —

.,
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Approximation of oscillatory coefficients at high reduced fre-
quencies.- The following series was assumed as an approximate expres-
sion for f(k) in the range ~ ~ k~w: . . .

..

f(k) =

where ~“ and ~ are the

E ankeq (k-~)
(11)

n.2

unlmown coefficients to be determined for ,

f(k) at a given.Mach number. Although
be used to express f(k), this form was
for purposes of integration. Note that
condition that

several forms of series could —
found to be the most convenient
equation (11) satisfies the

[()Mm f(k) = & Fc k - Fc(oafl=O
k+ w k~m

(12) “

.
Two boundary conditions which require the approxhate solution

for f(k) in the region ~ ~k S w to join the known value at k=~- “-”-
continuously in magnitude and slope we

(13)
. .

(14)

These two conditions are used to reduce ’thenumber of unknowns in
equation (11). Substitution of these two conditions into equation (11)
leads to the following expressions for the coefficients al and a2: ‘

and

alA + Ba2=—
al -%2

(15) ‘

(16)
—
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If the expression for f(k) given by equation (11) is substituted --

the left-hand side of equation (lb) and if the values of al and_ . . -~~

a2 are replaced by the “expressionsgiven by equations (15) and (16), .I’-.
then two expressions from which al and @. can be evaluated are” “ . ‘ ::;

obtained. For the case M= 0.5 and M= 0.6, the value of lq is -.-.
unity, and the two desired expressions are ,:-L

B+~sl~ossl+qlsin sl+alA+BElcossl+ a2sinsl = ----
a2 - al U12 + 812 al - a2.: -2 + 812U2

D
,

1 f(k)s~ % dk
[() _.]J;klsl -FC(CO) -

ok
(17a) ~

and

B+~s2coss2+a~sins2 alA+Bs2cos s2+~sin?2 .,-..,-

2“
+ =

a2 - al a12 + 82 al ‘U2. . “a22+s22 .—
..

1 f,(k)sinksa dk

[ 11~k1(s2) -Fe(w) -
0 k ..

(173) .
_—

where al and a2 are numbers greater thah:zero, apd al and S2 ‘“” ‘“” =

are greater than zero but less than or equal to
2?.

..—

m

A’simultaneous solution.of the nonlinear equations (17a) and (in)
for the coefficients al and .a2 was obtained by a graphical procedure. —

In some cases only an approx@ate solution for al ad a2 could be .-=,-
obtained. In these tistuces, values for al and ~ were selected

such that.the,magnitudes of error incuxred in the indicial function
were equal at the points S1 and S2. For-”thecase of M = 0.5, values ‘–” “~-

Of al = O.10n and S2 =.o.20n were chosen.and, for M = 0.6, .-
81 = 0.12fi and S2 & 0.23fi were chosen.

within.the limits O ~s ~ ~ and are
l+M

Both o? these values are
. . .

,.

approximately

.— ..

equally spaced. ““

.
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Values for the constants al and a2 could then be determined from

equations (15) and (16). In table III values for the constants al,

a2, al, and ~ which appear in the exponential approximation

(eq. (11)) are summarized for the lift and moment due to both sinking
and pitching motion.

RESULTS AND DISCUSSION

Determination of indicial functions.- With the coefficients in
equation (11) determined for the lift and moment oscillatorycoeffl-
cients due to both sinking and pitching motion, the indicial ftictions

kl(s)~ ml(s)> klq(s)~ and rnlq(s) were evaluated over the range

2M 0.6 by the methods of references 1s>~.for M=O.5 and M= -

and 2. These results.and corresponding functions calculated by the

method of reference 6 for O= s ~ ~
l+M

are shown, respectively, in

figures 1, 2, 3, and 4 together with the results for M = 0.7, obtained
from references 1 and 2. Also included is the function for incompressi-

. ble flow obtained by Wagner. The indicial lift and moment functions due
to pitching velocity for the airfoil rotating about the three-quarter-
chord point are shown in figures 5 and 6. For incompressible flow,

1 the lift and moment are fipulsive at s = O and constant thereafter;
however, for compressible flow, the lift and moment are finite and
time-dependent and approach a constant value very rapidly. Comparison
of the indicial lift functions due to both sinking and pitching
velocities for subsonic Mach numbers, figures ,1and 3, indicates that
as the subsonic Mach number increases the lift at s = O becomes less
and, for s equal to more than approximately two half-chords, the
growth of lift to the steady state becomes less rapid. For the case
of the moments about the quarter-chord point due to ’sinkingand
pitching motion, it is similarly seen from figures 2 and 4 that while
the moments are impulsive at zero for incompressible flow the moments
are finite and their values decrease with increasing.Mach number for
compressible flow. Although the moments for s > 0 are constant for
incompressible flow, a time-dependent moment which rapidly approaches
a constant exists for compressible flow where the rapidity of approadh
decreases with increasing Mach nqmber.

.,-.

-.

Considerations for indicial lift due to penetration of a sharp-edge

EEL” - In references 1 and it was shown that the indicial lift func-
.-

tion kl(s) for the region
.

the lift due to circulation

+

2M
s >— is associated primarily with

1 -M
only. As a consequence, an approximation

.—
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--
for the indicial lift function k2(s) due:to p.enetratignof a sharp-_i . j

.-

edge gust in this..regioncan be-determined on the basis-of the relation- , -
........ .-.;,

ship that exists between the two indicial lift functions, kl(s) and —.

%(s) for the c~culatory ‘Portionof the lift for incompressibie flow*. :: :.:=
In reference 1 the function k2(s) ..is determined for the region

—

2M
....

s>— on the basis of this relationship for M = 0.7. However, ~ ‘: -~”
——

1 -M
no information concerning the beginning portion of this function is
available at present-

....-..—.

A method for determining an explicit expression for this function—.

in the region O ~ s~~ is possible from an extension of the .“ .=

analysis given in..reference6 where the boundary conditions for the
perturbation velo$ity due to the penetration-of a gust can be sub- “--”.~ ‘~ .+=
stituted for the perturbation velocity due to sinking motion: Details-
of the evaluation of the function k2(s) for this region are given in .,.;

appendix A. The expression obtained.for th$s function is relatively “-”-=
simple as can be seen from the following equation:

—- -.-

k2(s) .* ‘-- ( )()&~2L
l+M

(18) “’ -
..._

r
where k2(s) is defined such that the lift on the airfoil is .:,.=~

.-

L(s) = -wcv~(s)
.

(~?). . , “..

mThe gust function k2(s) for the region ~~ s ~ ~ can .-
.-

be determined from an extension of the results given in reference 6.
An explicit expression cannot be easily obtained because of the corn-.- ~ “---
plexity of the downwash regions that must be considered. Since the
penetration function ‘isknown ever~here except-in the region

.—..- ------
-.

2M
<“s~ m““—, a reasonableestimateof the curvemay be obtained

.—

l+M–.. 1-M
by Joining the ends “ofthe two solutions,at.the points

2M— and - .’

2M “l+M
— by a smooth curve.
1 -M

-,———

In figure 7, the indicial lift functions due
sharp-edge gust are shown for M = 0.5, M = 0.6,

to penetration of a .*’

and M = 0.7 for an “; ‘ “-:

,- ..—
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extensive range of airfoil travel. Also shown is the solution for M = O
obtained by Kfisner. Inspection of figure 7 indicates that not only is
the growth of lift to the steady state less rapid as the subsonic Mach
number is increased but also the magnitude of lift in the beginning

-.

portion is less.

Approximation of indicial functions by analytic expressions.- Since
the exponential function has a simple operational equivalent and a series ‘::
of such functions has been found convenient for approximating kl(s) at
M= O and M = 0.7, a finite sum of exponential terms wa~ chosen to
approximate the indicial lift and moment functions for sirikingand ....-.=
pitching motion at M = 0.5 and M= 0.6as follow~:

‘~ls + b2eb. + ble
-& + b3e-P3s (20)

In table IV values for these constants are given for the lift and
moment due to sinking motion as well as for the li#’tand mqnent due to
pitching motion about the three-quarter-chord point. The constants

,.

are noted for M = 0.5 and M = 0.6 together with those for M = 0.7
from reference 2. In reference 8 the constants are given for incom-
pressible flow. Plots of these exponential approximations are shown
in figures 1, 2, ~, and 6. Comparison of the approxtiations with the

.

actual curves in these figures indicates-good agreement.

The exponential approximation given by equation (20) was also
found to be convenient for fitting the indicial lift functions k2(s)
due to penetration of a sharp-edge gust sho~ in fi~e 7. In table ~
the constants required for fitting the” ~(s) function at M = 0.5,
M = 0.6, and M= 0.7 for use in equation (20) are given. In refer-
ence 8 the constants for this indicial function are given for incom-
pressible flow. Comparison of these approximations with the derived
curves (see fig. 7) indicates excellent agreement.

Approximation of oscillatory coefficients by analytic expressions.-
The corresponding approximate expressions for the harmonically oscil-
lating airfoil can be found from equation (20) and an alternate form of
the reciprocal equations. For the case of the lift due to sinking
motion, the reciprocal equation is

J
m

Fe(k) + iGc(k) = ik kl(s)e-i~ ds
o

(21)
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Substitution of the-approximation for kl(s) given by equation (20)

leads to the follotiinge~ressions for Fe(k) a@ Gc(k)

In a similar fashion, expressions “forthe momeritfunctions M(k) and
N(k) can be obtaine”din the form given by equation (22) as well as ‘
for the lift functions due to pitching velocity about the three-
quarter-chord point

?cq)3c/4(k) and ~cq)3c~4(k) and the moment -

functions (~)3c/4(k) and (Nq)3c/4(k). The transfer””ofthese coef-

ficients from the leading edge to the three-qijarter-ch.ordpoint was
made with the aid of-equations (27) of reference 2.

,

Estimate of reliability of indicial ‘functions.-Although the

indicial functions are known exactly in the region OS s ~ ~, the

2M
reliability of these functions for values of s“> — is question-

l+M..
able since the oscillatory”coefficients at the.high reduced frequencies,
which were used in determining the indicial function in -thisregion,
have been determined only approximately. ,An &timate of the reliability
of the indicial functions in this region due to the errors in the oscil-
latory coefficients at the high reduced frequencies could be made on
the basis of the differences which exist between the approximate solu-
tion (based on the oscillatory coefficients) &d the exact solution

(based on ref. 6) of‘the indicial functions in the region O ~ s ~ ~~”- -
l+M .

Since the oscillatory coefficients at the high reduced frequencies
principally affect the beginning portion of the function kl(s), the
differences
should give
incurred in

between the approximate and exact~-olutions in this region
.
.:.:

a reasonable and conservative estimate of the errors
the indicial functions for larger’values of s. ..

.
.

.
. .
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In appendix B,
variation of errors

15

a chart (see fig. 8) is obtained for indicating the
in the indicial functions with airfoil travel s

due to the errors in the in-phase oscillatory coefficients at the high
reduced frequencies. “Although figure 8 indicates the errors in only
the indicial lift function kl(s), the results in this figure are also
applicable for the other indicial functions. Inspection of figure 8
fcm~=l indicates that the maxti”izmerror in the indicial f~ction
occurs within a quarter of a chord regardless of the.position of the
maximum error occurring in the in-phase oscillatory coefficients (as
indicated by several values of R). Since s = 0.5 lies within the .-

~egion () ~s ~AL for M = 0.5 and M = 0.6, it maybe expected
l+M

that the greatest errors in the indicial functions occur in this region
and that errors beyond this point approach zero very rapidly. The
largest differences between the indicial functions determined from the
oscillatcrrycoefficients and by the method given.in reference 6 in the

region o ~ s ~% were found to be less than 1.7 percent for
l+M

M= 0.5 and M= 0.6. ITIN.Ujit appearsfrom’figure8

errqrsin the indicial functions beyond the point s .

less than 1.7 percent and appear to approach zero very
increasing values of airfoil travel s.

that the largest
2M

l+M
are much “

rapidly for

Effects of discrepancies between data of reference 7 and those of
yresent investigation on indicial functions.- Just prior to completion
of this paper oscillatory lift and moment coefficients which cover a
larger range of reduced frequencies than that considered by Dietze and
Schade were published (see ref. 7). In figures 9 and 10 a comparison
is shown of the in-phase coefficients used in the present analysis
with those obtained from reference 7. For the range of reduced fre-
quencies O ~ k S 2.5, the data agree within approximately 3 percent.—
However, for k >2.5 the differences tend to become larger than
3 percent in some cases.

Consideration of the over-all effect of the discrepancies shown
in figures 9 and 10 indicates that these differences would result in
a maximum error of 3 percent in the indicial functions. This amount
of error does not appear serious, and in view of the few data avail-
able from reference 7, recomputation of the indicial function does
not appear worthwhile. It might be noted that the data of Dietze and
Schade agree better mutually than with the data of reference 7. The .
reason for these discrepancies is not known; consequently, the selection
of the most accurate oscillatory coefficients is still questionable.
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CONCLUDING REMARK. ”., 4’-. -. -. :.-—
--

From ap~roximate expressions for the”in.-phaseoscillatory coeffi- -- ;; :.”.
cients determined for the high reduced”frequencies and with a ~owledge”” . ~“~:”’.“”,=.=

of the existing data at the low reduced freq-uencies,the indicial lift ..
and moment functions“havebeen determined“f& sinki~g and pitching

-. .“T.
motion at Mach numbers M of0.5and 0.6.-

.=.-
.“ ...<

Theindicial lift function due to penetration of a
is determined for M = 0.5j M= 0.6, and M= 0.7 for
range of airfo,iltravel. Inspection of these”functions
not only is the growth of,lift to the steady’Gtate less
subsonic Mach number is increased but also the magnitude of lift in . L.-

the beginning portion is less. -
.-.... ~,:’. ... .“.

.-

—
sharp-edge gust ~~~ .;
an extensive — —
indicates that’ , :“~~
rapid as-the :+_

Langley Aeronautical,.Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., April 15, 1952.
... .-

.

.

.’

.- —.

.—

.-

* ..–

.

. —
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APPENDIX A

DETERMINATION OF INDICIAL LIFT FUNCTION k2(s) DUE TO

OF A SHARP-EDGE GUST FOR O ~ S ~ &

In reference 6 a method is outlined for determining
indicial lift functions for a sinking airfoil. However,

HZNE?IRLTION

the subsonic
if the boundary

conditions for the perturbation velocity due to the penetration,of a -
gust are substituted for the perturbation velocity due to sinking motion,
the function k2(s) can be obtained. Because of the complexity of the
problem arising after the Mach forecone intersects the trailing edge,

2M
the analysis is made only for the region O S s S —. The boundary

l+M
condition for the gust velocity U differs from the bo-undarycondition
of the sinking airfoil in that there is no perturbation velocity on the
part of the,airfoil left unshaded in the following sketch:

x.% /
/

/

/

/
x=-= ~,~

/
/

/“
/

/
/

x Sc= .—
24

x

@\

s.—

/
/

-—
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If as in.reference 6 the axes in the preceding sketch are transformed‘
by the relations ●

then the geometry can be.represented by

I

,=*(E.&.x)

-.

terms of the ~,q coordinate
indic’atethe region forwhich

V

The expression for the pressuye coeffic;ieqt‘C!D can be written-in
system as follow~, where the subscripts
the particular equation applies: ...

CP1 = 0 ‘: (Al)

.

Here it might be noted that equation (A2) d~fers from the corresponding
equation in reference 6 only by the lower limit of the last integral
since this integration extends over only t&t part of the wing which
has penetrated theg’wt:

-.
...-.-

.:. .

.

—— ..-—

—

.

r-..
. .

--
... .. - . .-

..-
- - ...-..-

-.

.

. .
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devaluationof equations (Al) and (A2) gives .,

CP1 = 0 (A3)

. 8ti

r

%-x
CP2 = fi(l+M) x+x

2

(A4)

and the expression for the indicial function ~(s) becomes

(A5)

1
or

‘2(S)=%

,
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, -.
.

INVESTIGATION OF ERRORS IN INDICIAL FUNCTIOIiDUE TO ERRORS IN IN-PHASE *

OSCILLATORY COEFFICIENTS AT HIGH REDUCED FREQUENCIES

Consider the following reciprocal relation for the lift due to
sinking velocity:

.—

.-

kl(s) =:
J

‘Fc(k)sin ks ~k

n k

It is assumed that Fc(k)

for value-sof k > ~ an

the following form:

where GM is the

u

is known for

error in the

(Bl)

values of O ~ k ~ ko; however,” “-”

Fe(k) function is assumed of “- ..:

‘C(k)error () %3.~~ml._
k

magnitude of the error at ‘k= M:

. -.

r

.

.
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If equation(B2)is substitutedintoequation(Bl),an expressionfor
the error in the k~(s) functionmay be obtainedas follows:

-.

f“ ‘“(’-:)stih dk+~kl(s)error,= ~ .

=

[
‘m&sin~s-

1

Si(kos)+ kosci(kos) (B3)

where Si(x) and Ci(x) are tabulated in Jahnke andEmde (ref. 9).

If the value of F=(”) is tiown and if the maxtium error is

assumed to occur at some arbitrary point ~~ (where K > 1), two
error functions of the type given by equation (B2), whe~e one is dis-
placed from the point ko by an amount K%, may be

that the value of Fc(rn)error= O as illustrated in
sketch:

Fe(k)

+

superposed such

the following

Final ap~roximation

L$_$

Actual curve

—.
~= _ 7

cm
/’ -. _

/

e’”
– Am

The value of’the max@mn error which occurs at k = Rko can be
expressed in terms of em as follows:

(Bk)
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The corresponding expression for the error in the function kl(s) due _“.. ..;:

trYthe total error
is

in the f~ct-ion Fe(k) shown in-the prece~ing sketch

A plot of”e.quatiOn

, for several values

-+

.-
.7.- :.

.i(~s) + sin(rc~s)”- sin(~sjJ “ (B5) “ “

(B5) as a function of lyp is shown in figure 8 . .:”.- ..
bf the parameter K. Thue; for a maximm error

in the Fe(k) function at any point .% < ~~ < CO,an estimate of

corresponding error in the fumction kl(s) can be obtained from
figure 8.

.

Gm* ‘ ‘- ._
the ‘:-::

. .

I
....

r

,.. . —, :-. ...=., .

-.

-.

.

.,-
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TABLE III

COEFFICIENTS IN EXPONIHU!IALAPPRoxMION alke
q(k-1)

+ a2ke *
(k-1) FOR

FREQ=IES FOR. M = 0.5 Mtll M = 0.6

OBc Illatory
funct Ion

f(k)

m(k)

fq(k)

mq(k)

. .

al for -

M = 0.5

-0.003203

-.07520

-.06812

.11575

M=O.6

-0.1566

-.0200

0

.08110

. .

6 = 0.5

).5595

.3495

.o&48

.04375

M = 0.6

0.14075

.lgg4

.04665

.00357Y

1
,. .

al for -

! = 0.5

0.200

.385

.584

1.175

M=O.6

1.000

.001

m

1.400

q for- -

M = ~.~

L 67

1.256

3.135

2.560

M= 0.6

3.150

2.056

1.100

26.000

1,
.
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TABLE IV

-pls +*S
+ b3e+3s FOR Al?PROX’Il#LTINGCOEFFICIl?ltE3IN EXPRESS1ON b. + ble + bze

THE IllDICIALL1l’TAND MOMIZNlFUNCTIONSAT M= 0.5, 0.6, dlro0.7

Indicial
function

kl(s)

ml(s)

@q)3c/1+ ‘s)

@q)3c/h (”)

k2(s)

Mach b.
number

I

31E

.5 0

.6 0

M

●

�

bl bz
b3

Pl $2
‘3

.

-0.406 -0.249 0.773 0.0754
-.452 -.630

0:~~ I 1.890
.893 .0646 :g:

-.5096 -.56’7 -.5866 .0536 .357

.0557 -1.000 .6263 2.555 3.308 6.09
-.100 -1.502 I.336 1.035 4.040 5.022
-.2425 .084 -.069 .974 .668 .438

0

0

-.o83

-,248
-,OW
-,00998

-.450
AC&

-2.,68
0
-.293

.522

.3&l

.1079

-.470
-.538
-.645

2.362 ------
-.2653 ------
.149 .800

-.2879 1.562
-.2469 .551
-.02g20 .1%5

-.235 .0716

-.302 .0545
-.lg2 .0542

4.08
--,-----

1.565

2.348

2.117
1.141

.374

.257

.3L25

4.9
1.345
2.44

6.605
4.138
4.04

2.165

L 46I.
1.474
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Figure 2.- Comparison of indicial moment functions due to a sudden

cue in S~~W velocity or pitching displacement for several
eubsonic Mach numbers. (Moment taken _about quarter-chord petit. )

.,,



,8

~ 6)
4

.6

.4

.2

I
#

A

— - — A.symp{ofIc dues —.. _l

Lo

../v

.

-3 _- — — ‘— z .
- —
0

“Q “ - — –

/

=s%=

Lo
0

0 4 8 /2- /6 20 24 28 ~
s, /?(Y/f-c Aora’s

H
z

Figure 3.- Co?npariscnof indicial lift functions “due to a sudden change m
$

in pitching velocity for an airfoil rotating about ita lead@ edge

for several subsonic Mach numbers.
u



31

-.24

-.20

‘.08

704

—- —Afyz@o}/c idue

1

. .— -

=5=
o 4 8 /2 /6 20 2+ 28

8,hfflf-chordc
.

Figure 4.- Comparison of indicial moment functions due to a sudden
change in pitching velocity for an airfoil rotating about its
leading edge for several subsonic Mach numbers. (Moment taken
about quarter-chord point.)

—-



w
m

-,3

7/

i,

.,

,: :

,-

0 2 4 6 8“ ‘/0 /2 /4 /6

s, AL7#chm$ .

Figure 5.- Comparison of indicial lift functions due to a sudden

change in pitchfig velocity for an airfoil rotating about its

three-quarter-chord point for several subsonic &ch numbeti.
E

s

2.

III

;2
,,

r’.
w

!
.

I

,,, ,“, .:, ,. ;, 1 ‘,,L. i’
,,

,,, ,., , ;,,, ,,,,:. ,,’ ,,. ,f ,. ,,, ,., ,.
I~~ ;1,, >,,ll’I:;,,,~:1l..~l\,’,l,!.! ,1’ ,:l’l+”,,l:~~ljj.’,; I ~ I ,“!.’ Ii “’ ““~:



,

2 # 6 6’ /0 /(!?

s, half-chord

Figure 6.- Cmparlaon of indicial moment functions due to a sudden

c-e in pitching ve 10C ity for an airfoil rotating about lta
Ithree-quarter-chord

(Moment taken about

.

point for several auba onic Mach numbers.

quarter-chord” point. )

w
w



34 ‘ NACA TN 2739

.

4$)

o 4 8 /t /6 20 24 28
8, hcif-dmds

,.

-..

.

!...

—

—

.

.-

Figure 7.- Comparison of the indicial lift functions due to penetration
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of a sharp-edge gust at several subsonic Mach numbers.
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Figure 9.- Comparisonof in-phaseoscillatoryliftcoefficients
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.present analysis with coefficients dete~ined from reference 7.



NACA TN 2739 37

-4

:3

ML+)
“2

o

.

:3

o

(a) Sinking velocity.

(b) Pitchingvelocity.

.=

.

-.

-.

.-.

Figure10.- Comparison of in-phase oscillatory moment coefficients used
in present analysis’with coefficients determined from reference 7,
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